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Problem Definition

0 Widespread usage of computer networks

0 Enable distributed work environments

0 Promote sharing and exchange of information

0 Sun’s Network File System (NES) is the de facto file sharing

standard.

0 Transparent: looks and feels like a local file system
0 Portable: runs on a wide variety of client and servers

0 Robust: simple crash recovery
0 The strengths of NFS also lend to its weaknesses

0 Large files restrict work to local storage

0 Raises barriers to sharing and exchange of large data sets
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NFS Limitations

0 Performance is dictated by latency and throughput of the

network

0 10 or 100 Mbps Ethernet can deliver at best only 1.2 to 11.9
MBps of bandwidth via NFS

0 NFS Server

0 Requires expensive, dedicated computer or network appliance
0 Single point of failure limits reliability and availability

0 Scales poorly in high-demand environments

0 NFS performance limitations are further aggravated by the

trend toward large file sizes
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Explosive Data Growth

0 Both documents and applications are becoming more media-

rich, driving up file sizes

0 Continued growth in capacity of memories and disks promotes

further file growth

0 Example environment: digital production houses

Sneaker net is preferred data transport media

Vista Vision film format: 4096 lines of 6144 pixels per frame

At 24 frames/second — 3.0 GB for 1 second of film

0
O
0 Cineon Lighting scanner captures at 14-bits per RGB component
O
0 42 minutes to transfer using 10 Mbps Ethernet.
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Enabling Technologies

0 Fibre Channel

High bandwidth, low latency network and channel interface
Highly scaleable, very flexible topologies

Becoming high-volume, hence lower-cost

O O O O

Support from a wide-variety of adapter, computer, networking,
and storage vendors

0 Supports the connection of storage devices to the network
0 Network-attached Storage (NAS)

0 Have your disks and share them too

0 Allows direct data transfer between disks and clients

0 Together, Fibre Channel and NAS enable storage area networks
(SANSs).
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Global File System

0 Novel block-addressable, serverless, hardware-based solution to

distributed file systems

0 Leverages high-bandwidth and high-availability of SANs to

facilitate applications with large storage requirements.

0 Symmetric architecture

0 Modeled like a shared memory multiprocessor

0 Clients are independent and have equal access to storage

0 Hardware-based mutual exclusion locking mechanism used to

ensure data consistency

0 Layered on top of a Network Storage Pool
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Network Storage Pool

0 Coalesces a heterogeneous collection of shared storage devices

into a single, logical contiguous pool of storage space

0 Allows for striping across multiple devices

0 Similar to Silicon Graphics” xlv logical volume manager

0 Devices may be divided into subpools according to device
performance characteristics
0 Provides an interface for a pool of device locks

0 Hides actually locking implementation from file system layer

0 Locks may be located on one or more storage devices or on a
dedicated lock device
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A Distributed GFS Environment
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Device Locks

0 Device Locks

0 Facilitate atomic read-modify-write operations

0 Similar in operation to memory locks with test-and-set and clear
operations.

0 Many locks (1 1024) per device leads to greater parallelism

0 Provide mechanism for client initiated error-recovery
0 Lock structure

0 State bit, activity bit, multi-bit counter
O State bit indicates whether lock is held or available
0 Activity bit used to initiate client-based lock recovery

0 Counter is only incremented on modify operations

0 Increase/decrease in counter resolution may be exchanged for
decrease/increase in lock quantity

Grant Erickson Page 10 University of Minnesota



File System Consistency

0 File system implements a many-to-one mapping of files to locks

0 GFS maintains perfect file consistency

Utilizes write-through caching
All client reads obtain the most recent data

O
0
0 Limits damage during client failure
0

Simplifies file system recovery

0 State of the lock counter is used for limited client-side caching of

file dinodes
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GFS Organization and Architecture

0 Super block
0 Maintains mount information and static file system attributes
0 Resource Groups

0 Partitions and distributes file system resources for parallel accesses
0 Allocated per subpool in the network storage pool

0 Contains bitmaps used for block allocation

0 Similar to Allocation Groups in Silicon Graphics” XFS

0 Dynamic Block Allocation

0 Available file system blocks may be freely allocated to directory or
file dinodes, pointer blocks, or data blocks

0 Inode and dinode numbers based on storage pool address
eliminating lookup indirection
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Mapping Files to Resource Groups and Subpools

Resource Group 10

Resource Group 6

Resource Group O

Directory Tree Resource Group 7
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Comparison of GFS and NFS Control and Data Paths

NFS GFS
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Silicon Graphics File System Interface

0 Irix file system interface based on the Virtual File System and
Virtual Node (vfs/vnode) interface

0 Developed concurrently with NFS for the Sun Microsystems Solaris
operating system

0 Extended and formalized by the UNIX System V Release 4 (SVR4)
specification

0 Although interface is standardized, implementations vary widely
0 Irix completely implements SVR4 interface specification

0 Implementation is both proprietary and undocumented

0 Significant impediment to third-party file system development

0 Proprietary implementation motivates ports to open platforms

0 Ports to open platforms eased by vfs/vnode interface
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Dinode Stuffing

0 Improve small file performance

0 Directory and file dinodes

occupy an entire file system

block

0 As block size increases header
information stays constant

0 Block utilization decreases
decreases leading to internal
fragmentation

0 Place user data in the unused

dinode space

0 Reduce internal fragmentation

0 Eliminate pointer indirection

0 Eliminate and additional read
operation
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Performance Evaluation

0 Bandwidth Characterization

0 Scaling Study
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Historical Perspective

0 Early GFS prototype first presented at 1996 NASA /IEEE Mass

Storage Systems and Technologies conference

0 Three node Silicon Graphics Indy system

0 Modified parallel SCSI interconnect
0 Single shared Seagate Barracuda 2LP disk
0 SCSI reserve and release locking
0 Today GFSis a fully-functional distributed file system
architecture
0 Leverages the flexibility of Fibre Channel SANs
0 Support for any SCSI storage device

0 Low latency, fine-granularity device locks
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First Generation Implementation

0 Initial implementation of GFS interacted with the Irix kernel in a
very limited fashion
0 Support for reading and writing data files
0 Limited directory support
0 Little or no error checking and recovery
0 Features and functionality expected of a UNIX file system and
now implemented in GFS today
Symbolic and hard file links
Access permissions

255 character file names

Execution of binaries and memory mapping of files

O O O O O

Correct and robust operation in the face of both system and user
errors
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Bandwidth Characterization

0 Two parameter tests

0 Request size varied exponentially from 64 KB to 4 MB
0 Transfer, or file, size varied exponentially from 64 KB to 512 MB

0 Test configuration

Single Silicon Graphics O2 desktop workstation
Prisa NetFX PCI-32 Fibre Channel host bus adapter

Single Ciprico Rimfire 7010 Fibre Channel RAID-3

0
0
0
0 Brocade Silkworm 16-port Fibre Channel switch

0 Characterize the bandwidth for each subsystem

0 Quantify the amount of overhead incurred by each subsystem

by examining bandwidth losses
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Host Adapter Bandwidth
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Network Storage Pool Bandwidth
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GFS Bandwidth




XFS Bandwidth




Grant Erickson

Relative Subsystem Efficiencies

Relative Hficiency

Prisa NetFX Network Global Fle XFS
Driver Sorage System
Pool Driver
Buffered I/ O
Write s
Mean 100.0% 95.6% 24.9% 87.8%
Sandard Deviation 0.00 0.03 0.08 0.90
Minimum 100.0% 90.4% 9.7% 43.7%
Maximum 100.0% 100.5% 38.8% 475.0%
Reads
Mean 100.0% 97.2% 25.7% 64.5%
Sandard Deviation 0.00 0.02 0.12 0.58
Minimum 100.0% 92.3% 14.7% 31.8%
Maximum 100.0% 103.6% 68.8% 319.0%
Direct I/ O
Write s
Mean 29.6% 112.3%
Sandard Deviation 0.19 0.53
Minimum 16.4% 94.6%
Maximum 79.1% 375.8%
Reads
Mean 31.4% 115.4%
Sandard Deviation 0.17 0.29
Minimum 16.9% 99.4%
Maximum 74.5% 215.9%
Overall
Mean 100.0% 96.4% 27.6% 90.0%
Sandard Deviation 0.00 0.03 0.15 0.63
Minimum 100.0% 90.4% 9.7% 31.8%
Maximum 100.0% 103.6% 79.1% 475.0%
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Mean I/ O Subsystem Efficiencies
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Scaling Studies

0 Barrier throughput tests

0 Large transfers size of 256 MB

0 Highly parallel test —each client reads and write its own data from
its own device

0 With and without dedicated root directory device
0 Test configuration

Four Silicon Graphics Challenge XL servers
Prisa NetFX HIO-64 Fibre Channel host bus adapter

Four Ciprico Rimfire 7010 Fibre Channel RAID-3s

0
0
0
0 Brocade Silkworm 16-port Fibre Channel switch
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Aggregaie Transier Ralte (MB/s)

Scalability: Shared Directory Device

0 First device contains both the file system root directory and the

first client’s data.
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Aggregate Transier Rate (MB/s)

Scalability: Dedicated Directory Device

0 First device contains only the file system root directory.
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Future Work

0 Ports to open platforms: Linux, FreeBSD, and NetBSD

0 Develop heuristics for the optimal sizing of file system blocks

and allocation of resource groups at file system creation

0 Hide latency of metadata accesses

0 Aggressive management of buffer cache

0 Implement logging

0 Quantify performance effects of head-of-queue lock tagging

0 Extend locking semantics to improve file system utilization

0 Allow for multiple readers or a single writer

0 Maintain fairness policy close to current implementation

0 Scaling to 8, 16, 32 and 64 clients
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Conclusions

0 Metadata accesses are limiting factor in GFS performance
0 Improvements in locking semantics should improve scalability

0 GFS architecture is still viable, implementation needs further

improvement

0 Open licensing

0 Binaries for Silicon Graphics Irix 6.2 and 6.3: Today

0 Source code: Summer 1998
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